Министерство образования и молодежной политики ЧР)
ГОУ «Чувашский республиканский Институт образовани	(R

КУРСОВАЯ РАБОТА

Параметры в школьном курсе математики. Элективный курс.

Выполнила учитель математики МОУ СОШ № 29 г. Чебоксары Морушкина Вера Васильевна

Оглавление

110яснительная записка	3
Структура курса планирования учебного материала	4
Темы:	4
Краткое содержание курса	4
I. Первоначальные сведения.	4
II. Решение линейных уравнений (и уравнений приводимых к линейным), содерж параметр	
III. Решение линейных неравенств, содержащих параметр	7
IV. Квадратные уравнения и неравенства, содержащие параметр	9
V. Свойства квадратичной функции в задачах с параметрами	9
VI. Тригонометрия и параметр. Иррациональные уравнения	10
VII. Показательные и логарифмические уравнения, содержащие параметр. Рациональные уравнения.	10
VIII. Производная и ее применение	10
IX. Нестандартные задачи.	10
Х. Текстовые задачи с использованием параметра.	11
Планирование	11
Заключение	12
Задачи для самостоятельного решения	13
Литература	15

Пояснительная записка

Цель профильного обучения в старших классах - обеспечение углубленного изучения предмета и подготовка учащихся к продолжению образования.

В заданиях ЕГЭ по математике с развернутым ответом (часть С), а также с кратким ответом (часть В), встречаются задачи с параметрами.

Появление таких заданий на экзаменах далеко не случайно, т.к. с их помощью проверяется техника владения формулами элементарной математики, методами решения уравнений и неравенств, умение выстраивать логическую цепочку рассуждений, уровень логического мышления учащегося и их математической культуры.

Решению задач с параметрами в школьной программе уделяется мало внимания. Большинство учащихся либо вовсе не справляются с такими задачами, либо приводят громоздкие выкладки. Причиной этого является отсутствие системы заданий по данной теме в школьных учебниках. Трудности при решении задач с параметрами обусловлены тем, что наличие параметра заставляет решать задачу не по шаблону, а рассматривать различные случаи, при каждом из которых методы решения существенно отличаются друг от друга.

В связи с этим возникла необходимость в разработке и проведении элективного курса для старшеклассников по теме: «Решение задач с параметрами».

Многообразие задач с параметрами охватывает весь курс школьной математики. Владение приемами решения задач с параметрами можно считать критерием знаний основных разделов школьной математики, уровня математического и логического мышления.

При проведении занятий на первое место выходят следующие формы организации работы: лекционно-семинарская, групповая и индивидуальная. Рекомендуемые методы работы: исследовательский и частично-поисковый. Задачи с параметрами дают прекрасный материал для настоящей учебно-исследовательской работы.

Задачи курса

- 1. Сформировать у учащихся устойчивый интерес к предмету;
- 2. Выявить и развить математические способности;
- 3. Подготовить к ЕГЭ и к обучению в вузе

Цель курса

- 1. Формировать у учащихся умения и навыки по решению задач с параметрами, сводящихся к исследованию линейных и квадратных уравнений, неравенств для подготовки к ЕГЭ и к обучению в вузе.
- 2. Изучение курса предполагает формирование у учащегося интереса к предмету, развитие их математических способностей, подготовку к ЕГЭ, централизованному тестированию и к вступительным экзаменам в вузы
- 3. Развивать исследовательскую и познавательную деятельность учащегося.
- 4. Обеспечить условия для самостоятельной творческой работы.

В результате изучения курса учащиеся должны

- 1. Усвоить основные приемы и методы решения уравнений, неравенств систем уравнений с параметрами.
- 2. Применять алгоритм решения уравнений, неравенств, содержащих параметр.
- 3. Проводить полное обоснование при решении задач с параметрами.
- 4. Овладеть навыками исследовательской деятельности.

Структура курса планирования учебного материала

Темы:

- I. Первоначальные сведения. 2ч
- II. Решения линейных уравнений, содержащих параметры. 2ч
- III. Решения линейных неравенств, содержащих параметры. 2ч
- IV. Квадратные уравнения и неравенства, содержащие параметры. 7ч
- V. Свойства квадратичной функции в задачах с параметрами. 4ч
- VI. Тригонометрия и параметры. 2ч Иррациональные уравнения. 2ч
- VII. Показательные и логарифмические уравнения, содержащие параметры. Рациональные уравнения. 2ч
- VIII. Производная и ее применения. 4ч Графические приемы решения. 2ч
 - IX. Нестандартные задачи с параметрами. 6ч
 - количество решений уравнений;
 - уравнения и неравенства с параметрами с некоторыми условиями
 - Х. Текстовые задачи с использованием параметра. 4 ч

Краткое содержание курса

І. Первоначальные сведения.

Определение параметра. Виды уравнений и неравенств, содержащие параметр. Основные приемы решения задач с параметрам. Решение простейших уравнений с параметрами.

Цель: Дать первоначальное представление учащемуся о параметре и помочь привыкнуть к параметру, рассмотреть понятие «параметр», его существенный признак и двойственная природа, особенности записи ответов при решении заданий с параметром.

Примерное содержание.

<u>Решить уравнение с параметром</u> - это значит найти все те и только те значения параметра, при которых задача имеет решения.

Условимся считать, что параметры в уравнениях принимают действительные значения, в задачах с параметрами отыскиваются действительные решения.

Другими примерами равенств с параметрами могут служить общие виды функций, изучаемых в основной школе.

- линейная функция y=kx+b, (k, b параметры, x, y- переменные);
- квадратичная функция $y = ax^2 + bx + c$, где $a \neq 0$ (a, b, c-параметры, x, y -переменные).

Задачи с параметрами мы встречаем и в геометрии. Уравнение окружности с центром в начале координат имеет вид $x^2 + y^2 = r^2$, где x, y- координаты точек - переменные, r- радиус окружности – параметр.

Моделируя различного вида задачи, можно получить различного вида уравнения, для которых нужно уметь выбирать ответы.

II. Решение линейных уравнений (и уравнений приводимых к линейным), содержащих параметр.

Общие подходы к решению линейных уравнений. Решение линейных уравнений, содержащих параметр.

Решение уравнений, приводимых к линейным.

Решение линейно-кусочных уравнений.

Применение алгоритма решения линейных уравнений, содержащих параметр.

Геометрическая интерпретация.

Решение системных уравнений.

Цель: Поиск решения линейных уравнений в общем, виде; исследование количества корней в зависимости от значений параметра.

Примерное содержание.

1. Алгоритм решения уравнений вида Ах=В.

Решением является любое действительное число	При А=0 и В=0
Нет решений	При $A=0$, $B \neq 0$
Единственное решение $x = \frac{B}{A}$	При А≠0

2. Рассмотреть примеры.

ПРИМЕР 1: Решить уравнение: m(mx-1) = 3(mx-1)

Решение.

Приведём данное уравнение к виду **Ах=В** и воспользуемся алгоритмом.

$$m^2x - m = 3mx - 3$$
,

$$m^2x - 3mx = m - 3$$
,

$$\underbrace{m(m-3)}_{A}x = \underbrace{m-3}_{B}$$

Рассмотрим случаи:

Если $m(m-3) \neq 0$, т.е. $m \neq 0$ и $m \neq 3$, то обе части уравнения разделим на

m(m-3). Получим $x = \frac{m-3}{m(m-3)}$, сократим дробь и получим единственное решение

уравнения:
$$x = \frac{1}{m}$$
.

Если m=0, то подставив это значение параметра в уравнение, получим $0 \cdot x = -3$ или 0 = -3 - неверное числовое равенство, следовательно, данное уравнение **решений не имеет.**

Если m=3, то подставив это значение параметра в уравнение, получим $0 \cdot x = 0$ или 0=0 - верное числовое равенство, следовательно, решением данного уравнения является любое действительное число.

Ответ: при $m \neq 0$ и $m \neq 3$ - единственное решение уравнения: $x = \frac{1}{m}$

$$\pi$$
ри $m=0$ - нет решений

при m=3 - любое действительное число.

ПРИМЕР 2: Решить уравнение: (a + 2)x + a = 2a + (a + 2a)x

Приведём данное уравнение к виду **Ах=В** и воспользуемся алгоритмом.

$$aex + 2x + a = 2e + ex + 2ax$$
,

$$aex + 2x - ex - 2ax = 2e - a$$
,

$$(a + 2 - \epsilon - 2a)x = 2\epsilon - a$$

$$\underbrace{(a-1)(e-2)}_{A}x = \underbrace{2e-a}_{B}.$$

Рассмотрим случаи:

Если $(a-1)(s-2) \neq 0$, т.е. $a \neq 1$ и $s \neq 2$, тогда получим единственное решение

уравнения:
$$x = \frac{2e - a}{(a-1)(e-2)}$$
.

Если a = 1, то подставив это значение параметра в уравнение, получим $0 \cdot x = 2e - 1$ Решение этого уравнения зависит от выражения, стоящего в правой части. Рассмотрим

случаи: a) 2B - 1 = 0, т.е. $\theta = \frac{1}{2}$ то подставив это значение параметра в уравнение,

получим $0 \cdot x = 0$ - верное числовое равенство, следовательно, решением данного уравнения является любое действительное число.

в)
$$2e-1 \neq 0$$
, т.е. $e \neq \frac{1}{2}$ то подставив это значение параметра в

уравнение, получим $0 \cdot x = 2e - 1$ или 0 = 2e - 1 - неверное числовое равенство, следовательно, данное уравнение решений не имеет.

3. Если $\theta = 2$, то подставив это значение параметра в уравнение, получим $0 \cdot x = 4 - a$ Решение этого уравнения зависит от выражения, стоящего в правой

Рассмотрим случаи: a) 4 - a = 0, т.е. a = 4 то подставив это значение параметра в уравнение, получим $0 \cdot x = 0$ - верное числовое равенство, следовательно. решением данного уравнения является любое действительное число.

- в) $4-a \ne 0$, т.е. $a \ne 4$ то подставив это значение параметра в уравнение, получим $0 \cdot x = 4 - a$ или 0 = 4 - a - неверное числовое равенство, следовательно, данное уравнение решений не имеет.
- 4. Если a=1 и b=2, то подставив эти значения параметров в уравнение, получим $0 \cdot x = 3$ - неверное числовое равенство, следовательно, данное уравнение

решений

не имеет.

Ответ: при $a \ne 1$ и $b \ne 2$ - единственное решение уравнения: $x = \frac{2b - a}{(a - 1)(b - 2)}$

при
$$a=1$$
, $s=\frac{1}{2}$ или $s=2$, $a=4$ - любое действительное число

при
$$a=1$$
, $e \neq \frac{1}{2}$ или $e=2$, $a \neq 4$ - нет решений.

III. Решение линейных неравенств, содержащих параметр.

Определение линейного неравенства.

Алгоритм решения неравенств.

Решение стандартных линейных неравенств, простейших неравенств с параметрами.

Исследование полученного ответа.

Обработка результатов, полученных при решении.

Цель: Выработать навыки решения стандартных неравенств и приводимых к ним, углубленное изучение методов решения линейных неравенств.

Примерное содержание.

1. На доске записаны следующие неравенства:

1.11и дос	Ke sammeambi es	годугощие перавенетва.	
a) $3x > 9$		6) −3 x ≥9	B) $2x-1 < 5$

Задание. Решите неравенства и запишите ответ.

2.Сформулируйте свойства неравенств, которые использованы при решении.

Неравенства вида $ax \ge b$ $ax \le b$, где a и b действительные числа или выражения, зависящие от параметров, a x — неизвестное, называются линейными неравенствами.

В зависимости от коэффициентов а и b решением линейного неравенства может быть либо неограниченный промежуток, либо числовая прямая, либо пустое множество.

3.. Решение линейных неравенств вида ах>b.

если a>0, то
$$x > \frac{b}{a}$$
.

если a<0, то
$$x < \frac{b}{a}$$
.

если
$$a=0$$
 и $b<0$, то $x \in R$.

Если а=0 и b≥0, то решений нет.

Пример 1. Решите неравенство ах>1.

1) если a>0, то
$$x > \frac{1}{a}$$

2) если a<0, то
$$x < \frac{1}{a}$$

4. Решение линейных неравенств вида ах<b.

если a>0, то
$$x < \frac{b}{a}$$
.

если a<0, то
$$x > \frac{b}{a}$$
.

если
$$a=0$$
 и $b>0$, то $x \in R$.

если a=0 и b \leq 0, то решений нет.

Пример 2. Решите неравенство ах<5.

1) если a>0, то
$$x < \frac{5}{a}$$

2) если a<0, то
$$x > \frac{5}{a}$$

3) если
$$a=0$$
, то $x \in R$.

5. Решение линейных неравенств вида ах ≥ b.

если a>0, то
$$x \ge \frac{b}{a}$$
.

если a<0, то
$$x \le \frac{b}{a}$$
.

если a=0 и $b \le 0$, то $x \in R$.

если a=0 и b>0, то решений нет.

Пример 3. Решите неравенство $ax \ge 4$.

1) если a>0, то
$$x \ge \frac{4}{a}$$

2) если a<0, то
$$x \le \frac{4}{a}$$

3) если а=0, то решений нет.

6. Решение линейных неравенств вида ах ≤ b

если a>0, то
$$x \le \frac{b}{a}$$
.

если a<0, то
$$x \ge \frac{b}{a}$$
.

если a=0 и b ≥ 0 , то $x \in R$.

если a=0 и b<0, то решений нет.

Пример 4. Решите неравенство ах \leq 6.

1) если a>0, то
$$x \le \frac{6}{a}$$
;

2) если a<0, то
$$x \ge \frac{6}{a}$$
;

3) если
$$a=0$$
, то $x \in R$.

7. Решить неравенства.

(m-1)x < 5m

если m-1>0, т.е. m>1, то
$$x < \frac{5m}{m-1}$$
,

2 если m-1<0, т.е. m<1, то
$$x > \frac{5m}{m-1}$$
,

3. если m-1=0, т.е. m=1, то
$$x \in R$$
.

$$(a-1)x > 6$$

если a-1>0, т.е. a>1, то
$$x>\frac{6}{a-1}$$
,

2. если a-1<0, т.е. a<1, то
$$x < \frac{6}{a-1}$$
,

При каких значениях параметра b уравнение 5x-7=4b имеет положительный корень?

Решение.

$$5x = 4b + 7$$
. $x = 0.8b + 1.4$ Так как корень x>0, то 0,8 b+14>0; 0,8 b>-14; b>-1,75.

Ответ: при b>-1,75

IV. Квадратные уравнения и неравенства, содержащие параметр.

Актуализация знаний о квадратном уравнении. Исследования количества корней, в зависимости от дискриминанта. Использование теоремы Виета. Исследование трехчлена. Алгоритм решения уравнений.

Аналитический способ решения.

Графический способ.

Классификация задач, с позиций применения к ним методов исследования.

Цель: Формировать умение и навыки решения квадратных уравнений с параметрами.

Примерное содержание.

1.Повторить

Теорему Виета.

Тождество $\sqrt{a^2} = |a|$

Свойства функций
$$y(x) = \frac{x}{a} + \frac{a}{x}$$
 и $y(x) = ax(x^2 + a^2)$

При каких значениях a, b, c и Д корни квадратного уравнения одного или разных знаков.

- 5.Выделение полного квадрата из квадратного трёхчлена.
- 2. Решить уравнения: 1) $ax^2 + 2x + 4 = 0$,

$$2)(a + 3)x^2+2x(a+5)+2a+7=0.$$

Ответ: 1) x=-2 при
$$a$$
=0; x=-4 при a =1/4; $\chi_{1,2} = \frac{1 \pm \sqrt{1-4a}}{2}$ при $a \in (-\infty;0) \cup (0;1/4)$;

не имеет корней при a > 1/4 .2) x=-1/4 при a=-3; x=1, x=-3/2

при
$$a=-4,a=1$$
; $\chi_{1,2}=\frac{-(a+5)\pm\sqrt{4-3a-a^2}}{a+3}$ при $a\in(-4;-3)\cup(-3;1)$; не имеет

корней при $a \in (-\infty, -4) \cup (1, +\infty)$.

V. Свойства квадратичной функции в задачах с параметрами.

Область значений функции.

Область определения функции.

Монотонность. Координаты вершины параболы.

Цель: Познакомить с многообразием задач с параметрами.

Примерное содержание.

Квадратичная функция задаётся формулой $y=ax^2+bx+c$, где $a\neq 0,b,c$ - параметры, х и у- переменные. Графиком квадратичной функции является парабола.

Коэффициент a определяет направление ветвей параболы. Если a>0, то они направлены вверх, если a<0, то направлены вниз. Дискриминант квадратного трёхчлена $D=b^2-4ac$ определяет наличие и количество общих точек с осью Ох. Если D<0, то парабола не пересекает ось абсцисс. Если D=0, то парабола и ось имеют одну общую точку. Если D>0, то общих точек две.

Графический способ решения задач с параметрами является универсальным, а значит (обратная сторона любой универсальности), есть конкретные случаи, когда задачу можно решить несколько проще.

Пусть для функции $y=ax^2+bx+c$, где $a\neq 0,b,c$ - параметры, x и y — переменные. Числа x_1 и x_2 – нули функции, $D=b^2-4ac$, D>0, $x_1\leq x_2$, $x_0=-\frac{b}{2a}$ - абсцисса вершины параболы.

В этих задачах, как правило, требуется определить те значения параметра, при которых выполняется некоторое условие для расположения корней.

VI. Тригонометрия и параметр. Иррациональные уравнения.

Использование основных свойств тригонометрических функций в задачах с параметрами. Тригонометрические уравнения, содержащие параметр. Тригонометрические неравенства, содержащие параметр. Область значений тригонометрических функций.

Цель: Сформировать умение использования свойств тригонометрических функций при решении тригонометрических уравнений и неравенств с параметрами. Исследование дробно-рациональных уравнений, содержащих параметры.

VII. Показательные и логарифмические уравнения, содержащие параметр. Рациональные уравнения.

Свойства степеней и показательной функции. Решение показательных уравнений и неравенств, содержащих параметры.

Свойства логарифмов и логарифмической функции. Решение логарифмических уравнений и неравенств с параметрами.

Цель: Сформировать умение решать показательные и логарифмические уравнения и неравенства с параметрами, рациональные уравнения

VIII. Производная и ее применение.

Касательная к функции.

Критические точки.

Монотонность.

Наибольшие и наименьшие значения функции.

Построение графиков функций.

Цель: Познакомить учащихся с типом задач с параметрами на применение методов дифференциального исчисления.

IX. Нестандартные задачи.

Уравнения высших степеней. Теорема Безу. Симметрические уравнения. Система однородных уравнений и приводящиеся к ним. Аналитические способы решения уравнений высших степеней с параметрами. Графический способ решения уравнений высших степеней с параметром

Х. Текстовые задачи с использованием параметра.

Задачи физического содержания. Задачи на объемные доли и концентрации вещества. Задачи на проценты.

В этом разделе формируются навыки решения текстовых задач.

Планирование

(34 часа)

№ урока	Тема
1	Основные понятия уравнений с параметрами
2	Основные понятия неравенств с параметрами
3-4	Уравнения с параметрами (первой степени)
5-6	Неравенства с параметрами (первой степени)
7-11	Уравнения с параметрами (второй степени)
12-14	Неравенства с параметрами (второй степени)
15-16	Рациональные уравнения с параметрами
17-18	Графические приемы при решении
19-20	Свойства квадратичной функции
21-23	Текстовые задачи с использованием параметра
24-25	Иррациональные уравнения с параметрами
26-28	Параметр и количество решений уравнений, неравенств и их систем
29-30	Уравнения и неравенства с параметрами с различными условиями
31-32	Нестандартные задачи
33	Итоговая контрольная работа по курсу
34	Защита индивидуальных проектов

Заключение

Введение элективного курса «Решение задач с параметрами» необходимо учащимся в наше время, как при подготовке к ЕГЭ, так и к вступительным экзаменам в вузы. Владение приемами решения задач с параметрам можно считать критерием знаний основных разделов школьной математики, уровня математического и логического мышления.

Решение задач, уравнений с параметрами, открывает перед учащимися значительное число эвристических приемов общего характера, ценных для математического развития личности, применяемых в исследованиях и на любом другом математическом материале. Именно такие задачи играют большую роль в формировании логического мышления и математической культуры у школьников, Поэтому учащиеся, владеющие методами решения задач с параметрами, успешно справляются с другими задачами.

Задачи для самостоятельного решения.

- 1. Решить уравнение: ax = 1
- 2. Решить уравнение: $(\varepsilon 3)x = 6$
- 3. Решить уравнение: (6-a)x = 5a 2x
- 4. Решить уравнение: a(x+1)+3=2a-5
- 5. Решить уравнение: ax-3=6
- 6. Решить уравнение: 4 = a (ex 1)
- 7. Решить уравнение: $ax + e \frac{3x + 2ae}{3} = \frac{1}{2}$
- 8. Решить уравнение: $a^2x 2a^2 + 3 = x + a$
- 9. Решить уравнение: $\frac{2(a+1)x}{a} = 3(x+1) + \frac{7}{a}$
- 10. Решить уравнение: $mx \frac{3x}{m} m = 7 \frac{8}{m} 2x$
- 11. При каких значениях параметра в уравнение $(x-e+1)^2 = 2x + 6e + (x+e-1)^2$:
 - а) имеет бесконечно много корней;
- в) имеет корень, равный единице;

б) не имеет корней;

- г) имеет ненулевые корни?
- 12. При каких значениях *a* уравнение 9 ax = 3(6 + x) имеет:
 - а) только положительные корни;
- б) только отрицательные корни?
- 13. Решить уравнение: 3xy 5x + 5y = 7:
- а) относительно x и найдите значение параметра, при котором корень равен нулю;
- б) относительно y и найдите значение параметра, при котором корень равен единице?
- 14. При каких значениях параметра ε число 1 является корнем уравнения $\varepsilon x 4 = 2x + 7$?
- 15. При каких значениях параметра a уравнение $(a^2 4)x = a + 2$ имеет корни не равные

39

16. Решить уравнение $x^2+a^2-1=0$.

Ответ: при |a| > 1 корней нет, при других $a = \pm \sqrt{1 - a^2}$.

17. Решить уравнение ax^2 -х+3 =0.

Ответ: при a=0 x=3, при $a=\frac{1}{12}$ x=6, при $a>\frac{1}{12}$ корней нет, при других a

$$\mathbf{x} = \frac{1 \pm \sqrt{1 - 12a}}{2a}$$

18. Решить неравенство $ax^2 + (a+1)x+1>0$ при различных значениях a.

Ответ: при a=0 x>-1; при a=1 x \in (- ∞ ; -1)U(-1; + ∞), при a>1 x \in (- ∞ ; -1)U(-1/a; + ∞),

при a<0 х \in (-1; -1/a); при a \in (0;1) х \in (- ∞ ; -1/a)U(-1; + ∞).

- 19. При каких значениях параметра a неравенство $x^2+ax+1<0$ не имеет решений? Ответ: $a\in[-1;1]$.
- 20. Решить неравенство $x^2-4ax+9 \le 0$.

Ответ: при |a| > 1,5 решений нет, при a=1,5 x=3, при a=-1,5 x=-3, при других a $x \in [2a-\sqrt{4a^2-9}; 2a+\sqrt{4a^2-9}].$

21. При каком значении параметра
$$a$$
 система $\begin{cases} x^2 + y^2 = a^2, \\ (x - y)^2 = 16 \end{cases}$ имеет ровно два решения?

Ответ: $a=2\sqrt{2}$.

22. Решить неравенство x^2 - 2ax + 1 > 0 для всех значений параметра a.

Ответ: при
$$|a| > 1$$
 $x \in R$, при $a = 1$ $x \in R$, где $x \ne 1$, при $a = -1$ $x \in R$, где $x \ne -1$,

при -1<
$$a$$
<1 x \in (- ∞ ; - $\sqrt{a^2-1}$)U(a + $\sqrt{a^2-1}$; + ∞).

23. При каких значениях a неравенство $ax^2 + 4ax + a + 3 < 0$ выполняется для всех действительных значений х?

Ответ: $a \in (-\infty; -4)$.

24. При каких значениях параметра *m* двойное неравенство

$$-6 < \frac{2x^2 + mx - 4}{x^2 - x + 1} < 4$$
 выполняется при всех действительных значениях х? Ответ: $m \in (-2; 4)$.

Литература

- 1. Агалаков.С.А Математика. Единый экзамен- 2004. Часть С. Омск; НОУ НОК Образование плюс, 2004.
- 2. Азаров А.И., Барвенов С.А., Федосеенко В.С. Методы решения задач с параметрами. Минск: Аверсэв, 2003.
- 3. Башмаков М., Резник Н. Задачник по алгебре для 7класса общеобразователь-ной школы. Санкт Петербург, 2001.
- 4. Галицкий М.Л., Гольдман А.М., Звавич Л.И.. Сборник задач по алгебре. 8-9кл. М.: Просвещение, 1994.
- 5. Горбачев В.И. Методы решения уравнений и неравенств с параметрами, Брянск, 1999
- 6. Горнштейн П.И. Задачи с параметрами. М.: Гимназия, 2002.
- 7. ГорнштейнП.И., Полонский В.Б., Якир М.С.. Задачи с параметрами. Илекса. Гимназия. Москва- Харьков, 2002.
- 8. Далингер В.А.. Всё для обеспечения успеха на выпускных и вступительных экзаменах по математике, выпуск 4. ОГПИ, Омск, 1995.
- 9. Евсеева А.И.. Уравнения с параметрами.// ж. «Математика в школе», 2003, №7.
- 10. Ерина Т.М.. Линейные и квадратные уравнения с параметром.// ж. «Матема-тика для школьников», 2004, №2.
- 11. Крамор В.С. Математика. Типовые примеры на вступительных экзаменах. М.: Аркти, 2000.
- 12. Крамор В.С. Примеры с параметрами и их решение. Аркти, Москва, 2000.
- 13. Математика для поступающих в вузы //Сост. Тырымов А.А.. Волгоград: Учитель, 2000.
- 14. Математика. Задачи Сканави М.И. Минск 1998г.
- 15. Математика. «Первое сентября».№ 4, 22, 23-2002 г; №12,38-2001 г
- 16. Материалы по подготовке к ЕГЭ 2001-2008 г
- 17. Мочалов В.В. Сильвестров В.В. Уравнения и неравенства с параметрами: Чебоксары Издательство Чувашского университета, 2006.
- 18. Нырко В.А., Табуева В.А. Задачи с параметрами. Екатеринбург; УГТУ,2001.
- 19. Потапов М.К., Олехник С.Н., Нестеренко Ю.В. Уравнения и неравенства с параметрами. Издат МГУ, 1992г
- 20. Е.М. Родионов. Справочник по математике для поступающих в ВУЗы. Изд во МЦ «Аспект», 1992.
- 21. Ястребинецкий Г.А. Задачи с параметрами. М. Просвещение, 1988г
- 22. Ю.Ф. Фоминых. Прикладные задачи по алгебре для 7-9 классов. М.: Просве-щение, 1999
- 23. А.В. Шевкин. Задачи с параметром. Линейные уравнения и их системы. 8-9 классы. М.: Русское слово, 2003.
- 24. Тысяча и один пример. Под ред. О.М. Назаренко, Л.Д. Назаренко. Изд во «Слобожаницина», 1994.
- 25. 514 задач с параметрами. Под ред. С.А. Тынянкина. Волгоград, 1991.